Normal view

There are new articles available, click to refresh the page.
Before yesterdayCybersecurity

Lattice-Based Cryptosystems and Quantum Cryptanalysis

28 May 2024 at 07:09

Quantum computers are probably coming, though we don’t know when—and when they arrive, they will, most likely, be able to break our standard public-key cryptography algorithms. In anticipation of this possibility, cryptographers have been working on quantum-resistant public-key algorithms. The National Institute for Standards and Technology (NIST) has been hosting a competition since 2017, and there already are several proposed standards. Most of these are based on lattice problems.

The mathematics of lattice cryptography revolve around combining sets of vectors—that’s the lattice—in a multi-dimensional space. These lattices are filled with multi-dimensional periodicities. The hard problem that’s used in cryptography is to find the shortest periodicity in a large, random-looking lattice. This can be turned into a public-key cryptosystem in a variety of different ways. Research has been ongoing since 1996, and there has been some really great work since then—including many practical public-key algorithms.

On April 10, Yilei Chen from Tsinghua University in Beijing posted a paper describing a new quantum attack on that shortest-path lattice problem. It’s a very dense mathematical paper—63 pages long—and my guess is that only a few cryptographers are able to understand all of its details. (I was not one of them.) But the conclusion was pretty devastating, breaking essentially all of the lattice-based fully homomorphic encryption schemes and coming significantly closer to attacks against the recently proposed (and NIST-approved) lattice key-exchange and signature schemes.

However, there was a small but critical mistake in the paper, on the bottom of page 37. It was independently discovered by Hongxun Wu from Berkeley and Thomas Vidick from the Weizmann Institute in Israel eight days later. The attack algorithm in its current form doesn’t work.

This was discussed last week at the Cryptographers’ Panel at the RSA Conference. Adi Shamir, the “S” in RSA and a 2002 recipient of ACM’s A.M. Turing award, described the result as psychologically significant because it shows that there is still a lot to be discovered about quantum cryptanalysis of lattice-based algorithms. Craig Gentry—inventor of the first fully homomorphic encryption scheme using lattices—was less impressed, basically saying that a nonworking attack doesn’t change anything.

I tend to agree with Shamir. There have been decades of unsuccessful research into breaking lattice-based systems with classical computers; there has been much less research into quantum cryptanalysis. While Chen’s work doesn’t provide a new security bound, it illustrates that there are significant, unexplored research areas in the construction of efficient quantum attacks on lattice-based cryptosystems. These lattices are periodic structures with some hidden periodicities. Finding a different (one-dimensional) hidden periodicity is exactly what enabled Peter Shor to break the RSA algorithm in polynomial time on a quantum computer. There are certainly more results to be discovered. This is the kind of paper that galvanizes research, and I am excited to see what the next couple of years of research will bring.

To be fair, there are lots of difficulties in making any quantum attack work—even in theory.

Breaking lattice-based cryptography with a quantum computer seems to require orders of magnitude more qubits than breaking RSA, because the key size is much larger and processing it requires more quantum storage. Consequently, testing an algorithm like Chen’s is completely infeasible with current technology. However, the error was mathematical in nature and did not require any experimentation. Chen’s algorithm consisted of nine different steps; the first eight prepared a particular quantum state, and the ninth step was supposed to exploit it. The mistake was in step nine; Chen believed that his wave function was periodic when in fact it was not.

Should NIST be doing anything differently now in its post–quantum cryptography standardization process? The answer is no. They are doing a great job in selecting new algorithms and should not delay anything because of this new research. And users of cryptography should not delay in implementing the new NIST algorithms.

But imagine how different this essay would be were that mistake not yet discovered? If anything, this work emphasizes the need for systems to be crypto-agile: to be able to easily swap algorithms in and out as research continues. And for using hybrid cryptography—multiple algorithms where the security rests on the strongest—where possible, as in TLS.

And—one last point—hooray for peer review. A researcher proposed a new result, and reviewers quickly found a fatal flaw in the work. Efforts to repair the flaw are ongoing. We complain about peer review a lot, but here it worked exactly the way it was supposed to.

This essay originally appeared in Communications of the ACM.

Apple Announces Post-Quantum Encryption Algorithms for iMessage

26 February 2024 at 07:04

Apple announced PQ3, its post-quantum encryption standard based on the Kyber secure key-encapsulation protocol, one of the post-quantum algorithms selected by NIST in 2022.

There’s a lot of detail in the Apple blog post, and more in Douglas Stabila’s security analysis.

I am of two minds about this. On the one hand, it’s probably premature to switch to any particular post-quantum algorithms. The mathematics of cryptanalysis for these lattice and other systems is still rapidly evolving, and we’re likely to break more of them—and learn a lot in the process—over the coming few years. But if you’re going to make the switch, this is an excellent choice. And Apple’s ability to do this so efficiently speaks well about its algorithmic agility, which is probably more important than its particular cryptographic design. And it is probably about the right time to worry about, and defend against, attackers who are storing encrypted messages in hopes of breaking them later on future quantum computers.

On the Insecurity of Software Bloat

15 February 2024 at 07:04

Good essay on software bloat and the insecurities it causes.

The world ships too much code, most of it by third parties, sometimes unintended, most of it uninspected. Because of this, there is a huge attack surface full of mediocre code. Efforts are ongoing to improve the quality of code itself, but many exploits are due to logic fails, and less progress has been made scanning for those. Meanwhile, great strides could be made by paring down just how much code we expose to the world. This will increase time to market for products, but legislation is around the corner that should force vendors to take security more seriously.

Improving the Cryptanalysis of Lattice-Based Public-Key Algorithms

14 February 2024 at 07:08

The winner of the Best Paper Award at Crypto this year was a significant improvement to lattice-based cryptanalysis.

This is important, because a bunch of NIST’s post-quantum options base their security on lattice problems.

I worry about standardizing on post-quantum algorithms too quickly. We are still learning a lot about the security of these systems, and this paper is an example of that learning.

News story.

❌
❌