❌

Normal view

Received yesterday β€” 13 February 2026

NDSS 2025 – Automated Mass Malware Factory

13 February 2026 at 15:00

Session 12B: Malware

Authors, Creators & Presenters: Heng Li (Huazhong University of Science and Technology), Zhiyuan Yao (Huazhong University of Science and Technology), Bang Wu (Huazhong University of Science and Technology), Cuiying Gao (Huazhong University of Science and Technology), Teng Xu (Huazhong University of Science and Technology), Wei Yuan (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)

PAPER
Automated Mass Malware Factory: The Convergence of Piggybacking and Adversarial Example in Android Malicious Software Generation

Adversarial example techniques have been demonstrated to be highly effective against Android malware detection systems, enabling malware to evade detection with minimal code modifications. However, existing adversarial example techniques overlook the process of malware generation, thus restricting the applicability of adversarial example techniques. In this paper, we investigate piggybacked malware, a type of malware generated in bulk by piggybacking malicious code into popular apps, and combine it with adversarial example techniques. Given a malicious code segment (i.e., a rider), we can generate adversarial perturbations tailored to it and insert them into any carrier, enabling the resulting malware to evade detection. Through exploring the mechanism by which adversarial perturbation affects piggybacked malware code, we propose an adversarial piggybacked malware generation method, which comprises three modules: Malicious Rider Extraction, Adversarial Perturbation Generation, and Benign Carrier Selection. Extensive experiments have demonstrated that our method can efficiently generate a large volume of malware in a short period, and significantly increase the likelihood of evading detection. Our method achieved an average attack success rate (ASR) of 88.3% on machine learning-based detection models (e.g., Drebin and MaMaDroid), and an ASR of 76% and 92% on commercial engines Microsoft and Kingsoft, respectively. Furthermore, we have explored potential defenses against our adversarial piggybacked malware.

ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.


Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the Organizations' YouTube Channel.

Permalink

The post NDSS 2025 – Automated Mass Malware Factory appeared first on Security Boulevard.

NDSS 2025 – Density Boosts Everything

13 February 2026 at 11:00

Session 12B: Malware

Authors, Creators & Presenters: Jianwen Tian (Academy of Military Sciences), Wei Kong (Zhejiang Sci-Tech University), Debin Gao (Singapore Management University), Tong Wang (Academy of Military Sciences), Taotao Gu (Academy of Military Sciences), Kefan Qiu (Beijing Institute of Technology), Zhi Wang (Nankai University), Xiaohui Kuang (Academy of Military Sciences)

PAPER
Density Boosts Everything: A One-stop Strategy For Improving Performance, Robustness, And Sustainability of Malware Detectors

In the contemporary landscape of cybersecurity, AI-driven detectors have emerged as pivotal in the realm of malware detection. However, existing AI-driven detectors encounter a myriad of challenges, including poisoning attacks, evasion attacks, and concept drift, which stem from the inherent characteristics of AI methodologies. While numerous solutions have been proposed to address these issues, they often concentrate on isolated problems, neglecting the broader implications for other facets of malware detection. This paper diverges from the conventional approach by not targeting a singular issue but instead identifying one of the fundamental causes of these challenges, sparsity. Sparsity refers to a scenario where certain feature values occur with low frequency, being represented only a minimal number of times across the dataset. The authors are the first to elevate the significance of sparsity and link it to core challenges in the domain of malware detection, and then aim to improve performance, robustness, and sustainability simultaneously by solving sparsity problems. To address the sparsity problems, a novel compression technique is designed to effectively alleviate the sparsity. Concurrently, a density boosting training method is proposed to consistently fill sparse regions. Empirical results demonstrate that the proposed methodologies not only successfully bolster the model's resilience against different attacks but also enhance the performance and sustainability over time. Moreover, the proposals are complementary to existing defensive technologies and successfully demonstrate practical classifiers with improved performance and robustness to attacks.

ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.


Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the Organizations' YouTube Channel.

Permalink

The post NDSS 2025 – Density Boosts Everything appeared first on Security Boulevard.

Received before yesterday

NDSS 2025 – PBP: Post-Training Backdoor Purification For Malware Classifiers

12 February 2026 at 15:00

Session 12B: Malware

Authors, Creators & Presenters: Dung Thuy Nguyen (Vanderbilt University), Ngoc N. Tran (Vanderbilt University), Taylor T. Johnson (Vanderbilt University), Kevin Leach (Vanderbilt University)

PAPER
PBP: Post-Training Backdoor Purification for Malware Classifiers

In recent years, the rise of machine learning (ML) in cybersecurity has brought new challenges, including the increasing threat of backdoor poisoning attacks on ML malware classifiers. These attacks aim to manipulate model behavior when provided with a particular input trigger. For instance, adversaries could inject malicious samples into public malware repositories, contaminating the training data and potentially misclassifying malware by the ML model. Current countermeasures predominantly focus on detecting poisoned samples by leveraging disagreements within the outputs of a diverse set of ensemble models on training data points. However, these methods are not applicable in scenarios involving ML-as-a-Service (MLaaS) or for users who seek to purify a backdoored model post-training. Addressing this scenario, we introduce PBP, a post-training defense for malware classifiers that mitigates various types of backdoor embeddings without assuming any specific backdoor embedding mechanism. Our method exploits the influence of backdoor attacks on the activation distribution of neural networks, independent of the trigger-embedding method. In the presence of a backdoor attack, the activation distribution of each layer is distorted into a mixture of distributions. By regulating the statistics of the batch normalization layers, we can guide a backdoored model to perform similarly to a clean one. Our method demonstrates substantial advantages over several state-of-the-art methods, as evidenced by experiments on two datasets, two types of backdoor methods, and various attack configurations. Our experiments showcase that PBP can mitigate even the SOTA backdoor attacks for malware classifiers, e.g., Jigsaw Puzzle, which was previously demonstrated to be stealthy against existing backdoor defenses. Notably, your approach requires only a small portion of the training data -- only 1% -- to purify the backdoor and reduce the attack success rate from 100% to almost 0%, a 100-fold improvement over the baseline methods.

ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.


Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the Organizations' YouTube Channel.

Permalink

The post NDSS 2025 – PBP: Post-Training Backdoor Purification For Malware Classifiers appeared first on Security Boulevard.

❌