Normal view

Received before yesterday

NDSS 2025 – Power-Related Side-Channel Attacks Using The Android Sensor Framework

13 November 2025 at 11:00

SESSION
Session 2D: Android Security 1

Authors, Creators & Presenters: Mathias Oberhuber (Graz University of Technology), Martin Unterguggenberger (Graz University of Technology), Lukas Maar (Graz University of Technology), Andreas Kogler (Graz University of Technology), Stefan Mangard (Graz University of Technology)

PAPER
Power-Related Side-Channel Attacks using the Android Sensor Framework

Software-based power side-channel attacks are a significant security threat to modern computer systems, enabling adversaries to extract confidential information. Existing attacks typically exploit direct power signals from dedicated interfaces, as demonstrated in the PLATYPUS attack, or power-dependent timing variations, as in the case of the Hertzbleed attack. As access to direct power signals is meanwhile restricted on more and more platforms, an important question is whether other exploitable power-related signals exist beyond timing proxies. In this paper, we show that Android mobile devices expose numerous power-related signals that allow power side-channel attacks. We systematically analyze unprivileged sensors provided by the Android sensor framework on multiple devices and show that these sensors expose parasitic influences of the power consumption. Our results include new insights into Android sensor leakage, particularly a novel leakage primitive: the rotation dependent power leakage of the geomagnetic rotation vector sensor. We extensively evaluate the exposed sensors for different information leakage types. We compare them with the corresponding ground truth, achieving correlations greater than 0.9 for some of our tested sensors. In extreme cases, we observe not only statistical results but also, e.g., changes in a compass app's needle by approximately 30° due to CPU stress. Additionally, we evaluate the capabilities of our identified leakage primitives in two case studies: As a remote attacker via the Google Chrome web browser and as a local attacker running inside an installed app. In particular, we present an end-to-end pixel-stealing attack on different Android devices that effectively circumvents the browser's cross-origin isolation with a leakage rate of 5 - 10 s per pixel. Lastly, we demonstrate a proof-of-concept AES attack, leaking individual key bytes using our newly discovered leakage primitive.

ABOUT NDSS The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.


Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the organization’s’ YouTube channel.

Permalink

The post NDSS 2025 – Power-Related Side-Channel Attacks Using The Android Sensor Framework appeared first on Security Boulevard.

NDSS 2025 – A Holistic Security Analysis Of Google Fuchsia’s (And gVisor’s) Network Stack

12 November 2025 at 15:00

SESSION
Session 2D: Android Security 1

Authors, Creators & Presenters: Inon Kaplan (Independent Researcher), Ron Even (Independent Researcher), Amit Klein (The Hebrew University Of Jerusalem, Israel)

---
PAPER
---

You Can Rand but You Can't Hide: A Holistic Security Analysis of Google Fuchsia's (and gVisor's) Network Stack
This research is the first holistic analysis of the algorithmic security of the Google Fuchsia/gVisor network stack. Google Fuchsia is a new operating system developed by Google in a "clean slate" fashion. It is conjectured to eventually replace Android as an operating system for smartphones, tablets, and IoT devices. Fuchsia is already running in millions of Google Nest Hub consumer products. Google gVisor is an application kernel used by Google's App Engine, Cloud Functions, Cloud ML Engine, Cloud Run, and Google Kubernetes Engine (GKE). Google Fuchsia uses the gVisor network stack code for its TCP/IP implementation. We report multiple vulnerabilities in the algorithms used by Fuchsia/gVisor to populate network protocol header fields, specifically the TCP initial sequence number, TCP timestamp, TCP and UDP source ports, and IPv4/IPv6 fragment ID fields. In our holistic analysis, we show how a combination of multiple attacks results in the exposure of a PRNG seed and a hashing key used to generate the above fields. This enables an attacker to predict future values of the fields, which facilitates several network attacks. Our work focuses on web-based device tracking based on the stability and relative uniqueness of the PRNG seed and the hashing key. We demonstrate our device tracking techniques over the Internet with browsers running on multiple Fuchsia devices, in multiple browser modes (regular/privacy), and over multiple networks (including IPv4 vs. IPv6). Our tests verify that device tracking for Fuchsia is practical and yields a reliable device ID. We conclude with recommendations on mitigating the attacks and their root causes. We reported our findings to Google, which issued CVEs and patches for the security vulnerabilities we disclosed.

---

ABOUT NDSS

The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

---

Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the organization’s’ YouTube channel.

Permalink

The post NDSS 2025 – A Holistic Security Analysis Of Google Fuchsia’s (And gVisor’s) Network Stack appeared first on Security Boulevard.

NDSS 2025 – MALintent: Coverage Guided Intent Fuzzing Framework For Android

12 November 2025 at 11:00

SESSION
Session 2D: Android Security 1

Authors, Creators & Presenters: Ammar Askar (Georgia Institute of Technology), Fabian Fleischer (Georgia Institute of Technology), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara), Taesoo Kim (Georgia Institute of Technology)

PAPER
MALintent: Coverage Guided Intent Fuzzing Framework for Android
Intents are the primary message-passing mechanism on Android, used for both communication between intra-app and inter-app components. Intents go across the trust boundary of applications and can break the security isolation between them. Due to their shared API with intra-app communication, apps may unintentionally expose functionality leading to important security bugs. MALintent is an open-source fuzzing framework that uses novel coverage instrumentation techniques and customizable bug oracles to find security issues in Android Intent handlers. MALintent is the first Intent fuzzer that applies greybox fuzzing on compiled closed-source Android applications. We demonstrate techniques widely compatible with many versions of Android and our bug oracles were able to find several crashes, vulnerabilities with privacy implications, and memory-safety issues in the top-downloaded Android applications on the Google Play store.

ABOUT NDSS The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.


Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the organization’s’ YouTube channel.

Permalink

The post NDSS 2025 – MALintent: Coverage Guided Intent Fuzzing Framework For Android appeared first on Security Boulevard.

❌