❌

Normal view

Received before yesterday

NDSS 2025 – Spatial-Domain Wireless Jamming With Reconfigurable Intelligent Surfaces

18 November 2025 at 11:00

SESSION
Session 3B: Wireless, Cellular & Satellite Security

-----------

-----------

Authors, Creators & Presenters: Philipp Mackensen (Ruhr University Bochum), Paul Staat (Max Planck Institute for Security and Privacy), Stefan Roth (Ruhr University Bochum), Aydin Sezgin (Ruhr University Bochum), Christof Paar (Max Planck Institute for Security and Privacy), Veelasha Moonsamy (Ruhr University Bochum)

-----------

PAPER

-----------

Spatial-Domain Wireless Jamming with Reconfigurable Intelligent Surfaces

-----------

Wireless communication infrastructure is a cornerstone of modern digital society, yet it remains vulnerable to the persistent threat of wireless jamming. Attackers can easily create radio interference to overshadow legitimate signals, leading to denial of service. The broadcast nature of radio signal propagation makes such attacks possible in the first place, but at the same time poses a challenge for the attacker: The jamming signal does not only reach the victim device but also other neighboring devices, preventing precise attack targeting. In this work, we solve this challenge by leveraging the emerging RIS technology, for the first time, for precise delivery of jamming signals. In particular, we propose a novel approach that allows for environment-adaptive spatial control of wireless jamming signals, granting a new degree of freedom to perform jamming attacks. We explore this novel method with extensive experimentation and demonstrate that our approach can disable the wireless communication of one or multiple victim devices while leaving neighboring devices unaffected. Notably, our method extends to challenging scenarios where wireless devices are very close to each other: We demonstrate complete denial-of-service of a Wi-Fi device while a second device located at a distance as close as 5 mm remains unaffected, sustaining wireless communication at a data rate of 25 Mbit/s. Lastly, we conclude by proposing potential countermeasures to thwart RIS-based spatial domain wireless jamming attacks.

-----------

ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

-----------

Our thanks to the **[Network and Distributed System Security (NDSS) Symposium][1]** for publishing their Creators, Authors and Presenter’s superb **[NDSS Symposium 2025 Conference][2]** content on the **[organization’s’][1]** **[YouTube][3]** channel.

Permalink

The post NDSS 2025 – Spatial-Domain Wireless Jamming With Reconfigurable Intelligent Surfaces appeared first on Security Boulevard.

NDSS 2025 – Detecting IMSI-Catchers By Characterizing Identity Exposing Messages In Cellular Traffic

18 November 2025 at 11:00

SESSION
Session 3B: Wireless, Cellular & Satellite Security

-----------

-----------

Authors, Creators & Presenters: Jiska Classen (Hasso Plattner Institute, University of Potsdam), Alexander Heinrich (TU Darmstadt, Germany), Fabian Portner (TU Darmstadt, Germany), Felix Rohrbach (TU Darmstadt, Germany), Matthias Hollick (TU Darmstadt, Germany)

-----------

PAPER

-----------

Starshields for iOS: Navigating the Security Cosmos in Satellite Communication

-----------

Apple has integrated satellite communication into their latest iPhones, enabling emergency communication, road- side assistance, location sharing with friends, iMessage, and SMS. This technology allows communication when other wireless services are unavailable. However, the use of satellites poses restrictions on bandwidth and delay, making it difficult to use modern communication protocols with their security and privacy guarantees. To overcome these challenges, Apple designed and implemented a proprietary satellite communication protocol to address these limitations. We are the first to successfully reverse-engineer this protocol and analyze its security and privacy properties. In addition, we develop a simulation-based testbed for testing emergency services without causing emergency calls. Our tests reveal protocol and infrastructure design issues. For example, compact protocol messages come at the cost of missing integrity protection and require an internet-based setup phase. We further demonstrate various restriction bypasses, such as misusing location sharing to send arbitrary text messages on old iOS versions, and sending iMessages over satellite from region-locked countries. These bypasses allow us to overcome censorship and operator control of text messaging services.

-----------

ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

-----------

Our thanks to the **[Network and Distributed System Security (NDSS) Symposium][1]** for publishing their Creators, Authors and Presenter’s superb **[NDSS Symposium 2025 Conference][2]** content on the **[organization’s’][1]** **[YouTube][3]** channel.

Permalink

The post NDSS 2025 – Detecting IMSI-Catchers By Characterizing Identity Exposing Messages In Cellular Traffic appeared first on Security Boulevard.

NDSS 2025 – Detecting IMSI-Catchers By Characterizing Identity Exposing Messages In Cellular Traffic

17 November 2025 at 15:00

SESSION
Session 3B: Wireless, Cellular & Satellite Security

-----------

-----------

Authors, Creators & Presenters: Tyler Tucker (University of Florida), Nathaniel Bennett (University of Florida), Martin Kotuliak (ETH Zurich), Simon Erni (ETH Zurich), Srdjan Capkun (ETH Zuerich), Kevin Butler (University of Florida), Patrick Traynor (University of Florida)

-----------

PAPER

-----------

Detecting IMSI-Catchers By Characterizing Identity Exposing Messages In Cellular Traffic

-----------

IMSI-Catchers allow parties other than cellular network providers to covertly track mobile device users. While the research community has developed many tools to combat this problem, current solutions focus on correlated behavior and are therefore subject to substantial false classifications. In this paper, we present a standards-driven methodology that focuses on the messages an IMSI-Catcher textit(must) use to cause mobile devices to provide their permanent identifiers. That is, our approach focuses on causal attributes rather than correlated ones. We systematically analyze message flows that would lead to IMSI exposure (most of which have not been previously considered in the research community), and identify 53 messages an IMSI-Catcher can use for its attack. We then perform a measurement study on two continents to characterize the ratio in which connections use these messages in normal operations.

-----------

ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

-----------

Our thanks to the **[Network and Distributed System Security (NDSS) Symposium][1]** for publishing their Creators, Authors and Presenter’s superb **[NDSS Symposium 2025 Conference][2]** content on the **[organization’s’][1]** **[YouTube][3]** channel.

Permalink

The post NDSS 2025 – Detecting IMSI-Catchers By Characterizing Identity Exposing Messages In Cellular Traffic appeared first on Security Boulevard.

NDSS 2025 – Time-Varying Bottleneck Links In LEO Satellite Networks

17 November 2025 at 11:00

SESSION
Session 3B: Wireless, Cellular & Satellite Security

-----------

-----------

Authors, Creators & Presenters: Yangtao Deng (Tsinghua University), Qian Wu (Tsinghua University), Zeqi Lai (Tsinghua University), Chenwei Gu (Tsinghua University), Hewu Li (Tsinghua University), Yuanjie Li (Tsinghua University), Jun Liu (Tsinghua University)

-----------

PAPER

-----------

Time-varying Bottleneck Links in LEO Satellite Networks: Identification, Exploits, and Countermeasures
In this paper, we perform a multifaceted study on the security risk involved by the unique time-varying bottleneck links in emerging Low-Earth Orbit (LEO) satellite networks (LSNs). We carry out our study in three steps. First, we profile the spatial and temporal characteristics of bottleneck links and how they might be exploited for bottleneck identification. Thus, the bottleneck links imposes a new risk of link flooding attack (LFA) on LSNs. Second, we propose SKYFALL, a new LFA risk analyzer that enables satellite network operators to simulate various LFA behaviors and comprehensively analyze the consequences on LSN services. Concretely, SKYFALL's analysis based on real-world information of operational LSNs demonstrates that the throughput of legal background traffic could be reduced by a factor of 3.4 if an attacker can manipulate a number of compromised user terminals to continuously congest the bottleneck links. Based on our analysis, we finally discuss the limitations of traditional LFA countermeasures and propose new mitigation strategies for LSNs.

-----------

ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

-----------

Our thanks to the **[Network and Distributed System Security (NDSS) Symposium][1]** for publishing their Creators, Authors and Presenter’s superb **[NDSS Symposium 2025 Conference][2]** content on the **[organization’s’][1]** **[YouTube][3]** channel.

Permalink

The post NDSS 2025 – Time-Varying Bottleneck Links In LEO Satellite Networks appeared first on Security Boulevard.

NDSS 2025 – Magmaw: Modality-Agnostic Adversarial Attacks

16 November 2025 at 11:00

SESSION
Session 3B: Wireless, Cellular & Satellite Security

Authors, Creators & Presenters: Jung-Woo Chang (University of California, San Diego), Ke Sun (University of California, San Diego), Nasimeh Heydaribeni (University of California, San Diego), Seira Hidano (KDDI Research, Inc.), Xinyu Zhang (University of California, San Diego), Farinaz Koushanfar (University of California, San Diego)

-----------------
PAPER
-----------------
Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based Wireless Communication Systems

Machine Learning (ML) has been instrumental in enabling joint transceiver optimization by merging all physical layer blocks of the end-to-end wireless communication systems. Although there have been a number of adversarial attacks on ML-based wireless systems, the existing methods do not provide a comprehensive view including multi-modality of the source data, common physical layer protocols, and wireless domain constraints. This paper proposes Magmaw, a novel wireless attack methodology capable of generating universal adversarial perturbations for any multimodal signal transmitted over a wireless channel. We further introduce new objectives for adversarial attacks on downstream applications. We adopt the widely used defenses to verify the resilience of Magmaw. For proof-of-concept evaluation, we build a real-time wireless attack platform using a software-defined radio system. Experimental results demonstrate that Magmaw causes significant performance degradation even in the presence of strong defense mechanisms. Furthermore, we validate the performance of Magmaw in two case studies: encrypted communication channel and channel modality-based ML model. Our code is available at [https://github.com/juc023/Magmaw].

----------
ABOUT NDSS
-----------
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

------------

Our thanks to the **[Network and Distributed System Security (NDSS) Symposium][1]** for publishing their Creators, Authors and Presenter’s superb **[NDSS Symposium 2025 Conference][2]** content on the **[organization’s’][1]** **[YouTube][3]** channel.

Permalink

The post NDSS 2025 – Magmaw: Modality-Agnostic Adversarial Attacks appeared first on Security Boulevard.

❌