Normal view

Received before yesterday

NDSS 2025 – MineShark: Cryptomining Traffic Detection At Scale

15 November 2025 at 11:00

SESSION
Session 3A: Network Security 1

Authors, Creators & Presenters: Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

----
PAPER
-----

MineShark: Cryptomining Traffic Detection at Scale
The rapid growth of cryptojacking and the increase in regulatory bans on cryptomining have prompted organizations to enhance detection ability within their networks. Traditional methods, including rule-based detection and deep packet inspection, fall short in timely and comprehensively identifying new and encrypted mining threats. In contrast, learning-based techniques show promise by identifying content-agnostic traffic patterns, adapting to a wide range of cryptomining configurations. However, existing learning-based systems often lack scalability in real-world detection, primarily due to challenges with unlabeled, imbalanced, and high-speed traffic inputs. To address these issues, we introduce MineShark, a system that identifies robust patterns of mining traffic to distinguish between vast quantities of benign traffic and automates the confirmation of model outcomes through active probing to prevent an overload of model alarms. As model inference labels are progressively confirmed, MineShark conducts self-improving updates to enhance model accuracy. MineShark is capable of line-rate detection at various traffic volume scales with the allocation of different amounts of CPU and GPU resources. In a 10 Gbps campus network deployment lasting ten months, MineShark detected cryptomining connections toward 105 mining pools ahead of concurrently deployed commercial systems, 17.6% of which were encrypted. It automatically filtered over 99.3% of false alarms and achieved an average packet processing throughput of 1.3 Mpps, meeting the line-rate demands of a 10 Gbps network, with a negligible loss rate of 0.2%. We publicize MineShark for broader use.

-----
ABOUT NDSS
-----

The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

-----

Our thanks to the **[Network and Distributed System Security (NDSS) Symposium][1]** for publishing their Creators, Authors and Presenter’s superb **[NDSS Symposium 2025 Conference][2]** content on the **[organization’s’][1]** **[YouTube][3]** channel.

Permalink

The post NDSS 2025 – MineShark: Cryptomining Traffic Detection At Scale appeared first on Security Boulevard.

NDSS 2025 – The Discriminative Power Of Cross-layer RTTs In Fingerprinting Proxy Traffic

14 November 2025 at 15:00

SESSION
Session 3A: Network Security 1

Authors, Creators & Presenters: Diwen Xue (University of Michigan), Robert Stanley (University of Michigan), Piyush Kumar (University of Michigan), Roya Ensafi (University of Michigan)

-----

PAPER

-----

The Discriminative Power of Cross-layer RTTs in Fingerprinting Proxy Traffic The escalating global trend of Internet censorship has necessitated an increased adoption of proxy tools, especially obfuscated circumvention proxies. These proxies serve a fundamental need for access and connectivity among millions in heavily censored regions. However, as the use of proxies expands, so do censors' dedicated efforts to detect and disrupt such circumvention traffic to enforce their information control policies. In this paper, we bring out the presence of an inherent fingerprint for detecting obfuscated proxy traffic. The fingerprint is created by the misalignment of transport- and application-layer sessions in proxy routing, which is reflected in the discrepancy in Round Trip Times (RTTs) across network layers. Importantly, being protocol-agnostic, the fingerprint enables an adversary to effectively target multiple proxy protocols simultaneously. We conduct an extensive evaluation using both controlled testbeds and real-world traffic, collected from a partner ISP, to assess the fingerprint's potential for exploitation by censors. In addition to being of interest on its own, our timing-based fingerprinting vulnerability highlights the deficiencies in existing obfuscation approaches. We hope our study brings the attention of the circumvention community to packet timing as an area of concern and leads to the development of more sustainable countermeasures.

-----
ABOUT NDSS
-----

The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

Our thanks to the **[Network and Distributed System Security (NDSS) Symposium][1]** for publishing their Creators, Authors and Presenter’s superb **[NDSS Symposium 2025 Conference][2]** content on the **[organization’s’][1]** **[YouTube][3]** channel.

Permalink

The post NDSS 2025 – The Discriminative Power Of Cross-layer RTTs In Fingerprinting Proxy Traffic appeared first on Security Boulevard.

NDSS 2025 – Heimdall: Towards Risk-Aware Network Management Outsourcing

14 November 2025 at 11:00

SESSION
Session 3A: Network Security 1

Authors, Creators & Presenters: Yuejie Wang (Peking University), Qiutong Men (New York University), Yongting Chen (New York University Shanghai), Jiajin Liu (New York University Shanghai), Gengyu Chen (Carnegie Mellon University), Ying Zhang (Meta), Guyue Liu (Peking University), Vyas Sekar (Carnegie Mellon University)

PAPER
PAPER Heimdall: Towards Risk-Aware Network Management Outsourcing

Enterprises are increasingly outsourcing network management (e.g., troubleshooting routing issues) to reduce cost and improve efficiency, either by hiring third-party contractors or by outsourcing to third-party vendors. Unfortunately, recent events have shown that this outsourcing model has become a new source of network incidents in customer networks. In this work, we argue that a risk-aware outsourcing approach is needed that enables customers to measure and assess risk transparently and make informed decisions to minimize harm. We first concretely define the notion of risk in the context of outsourced network management and then present an end-to-end framework, called Heimdall, which enables enterprises to assess, monitor, and respond to risk. Heimdall automatically builds a dependency graph to accurately assess the risk of an outsourced task, and uses a fine-grained reference monitor to monitor and mitigate potential risks during operation. Our expert validation results show that Heimdall effectively controls risk for outsourced network operations, resolving 92% of practical issues at the minimal risk level while incurring only a marginal timing overhead of approximately 7%.

ABOUT NDSS The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the organization’s’ YouTube channel.

Permalink

The post NDSS 2025 – Heimdall: Towards Risk-Aware Network Management Outsourcing appeared first on Security Boulevard.

NDSS 2025 – Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall of China

14 November 2025 at 11:00

SESSION
Session 3A: Network Security 1

Authors, Creators & Presenters: Shencha Fan (GFW Report), Jackson Sippe (University of Colorado Boulder), Sakamoto San (Shinonome Lab), Jade Sheffey (UMass Amherst), David Fifield (None), Amir Houmansadr (UMass Amherst), Elson Wedwards (None), Eric Wustrow (University of Colorado Boulder)

PAPER
Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall of China
We present textit(Wallbleed), a buffer over-read vulnerability that existed in the DNS injection subsystem of the Great Firewall of China. Wallbleed caused certain nation-wide censorship middleboxes to reveal up to 125 bytes of their memory when censoring a crafted DNS query. It afforded a rare insight into one of the Great Firewall's well-known network attacks, namely DNS injection, in terms of its internal architecture and the censor's operational behaviors. To understand the causes and implications of Wallbleed, we conducted longitudinal and Internet-wide measurements for over two years from October 2021. We (1) reverse-engineered the injector's parsing logic, (2) evaluated what information was leaked and how Internet users inside and outside of China were affected, and (3) monitored the censor's patching behaviors over time. We identified possible internal traffic of the censorship system, analyzed its memory management and load-balancing mechanisms, and observed process-level changes in an injector node. We employed a new side channel to distinguish the injector's multiple processes to assist our analysis. Our monitoring revealed that the censor coordinated an incorrect patch for Wallbleed in November 2023 and fully patched it in March 2024. Wallbleed exemplifies that the harm censorship middleboxes impose on Internet users is even beyond their obvious infringement of freedom of expression. When implemented poorly, it also imposes severe privacy and confidentiality risks to Internet users.

ABOUT NDSS The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the organization’s’ YouTube channel.

Permalink

The post NDSS 2025 – Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall of China appeared first on Security Boulevard.

NDSS 2025 – Incorporating Gradients To Rules

13 November 2025 at 15:00

SESSION
Session 3A: Network Security 1

Authors, Creators & Presenters: ingzhi Wang (Northwestern University), Xiangmin Shen (Northwestern University), Weijian Li (Northwestern University), Zhenyuan LI (Zhejiang University), R. Sekar (Stony Brook University), Han Liu (Northwestern University), Yan Chen (Northwestern University)

PAPER
Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance-based Intrusion Detection

As cyber attacks grow increasingly sophisticated and stealthy, it becomes more imperative and challenging to detect intrusion from normal behaviors. Through fine-grained causality analysis, provenance-based intrusion detection systems (PIDS) demonstrated a promising capacity to distinguish benign and malicious behaviors, attracting widespread attention from both industry and academia. Among diverse approaches, rule-based PIDS stands out due to its lightweight overhead, real-time capabilities, and explainability. However, existing rule-based systems suffer low detection accuracy, especially the high false alarms, due to the lack of fine-grained rules and environment-specific configurations. In this paper, we propose CAPTAIN, a rule-based PIDS capable of automatically adapting to diverse environments. Specifically, we propose three adaptive parameters to adjust the detection configuration with respect to nodes, edges, and alarm generation thresholds. We build a differentiable tag propagation framework and utilize the gradient descent algorithm to optimize these adaptive parameters based on the training data. We evaluate our system using data from DARPA Engagements and simulated environments. The evaluation results demonstrate that CAPTAIN enhances rule-based PIDS with learning capabilities, resulting in improved detection accuracy, reduced detection latency, lower runtime overhead, and more interpretable detection procedures and results compared to the state-of-the-art (SOTA) PIDS.

ABOUT NDSS The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the organization’s’ YouTube channel.

Permalink

The post NDSS 2025 – Incorporating Gradients To Rules appeared first on Security Boulevard.

NDSS 2025 – Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall of China

12 November 2025 at 15:00

SESSION
Session 3A: Network Security 1

Authors, Creators & Presenters: Shencha Fan (GFW Report), Jackson Sippe (University of Colorado Boulder), Sakamoto San (Shinonome Lab), Jade Sheffey (UMass Amherst), David Fifield (None), Amir Houmansadr (UMass Amherst), Elson Wedwards (None), Eric Wustrow (University of Colorado Boulder)

PAPER
Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall of China
We present textit(Wallbleed), a buffer over-read vulnerability that existed in the DNS injection subsystem of the Great Firewall of China. Wallbleed caused certain nation-wide censorship middleboxes to reveal up to 125 bytes of their memory when censoring a crafted DNS query. It afforded a rare insight into one of the Great Firewall's well-known network attacks, namely DNS injection, in terms of its internal architecture and the censor's operational behaviors. To understand the causes and implications of Wallbleed, we conducted longitudinal and Internet-wide measurements for over two years from October 2021. We (1) reverse-engineered the injector's parsing logic, (2) evaluated what information was leaked and how Internet users inside and outside of China were affected, and (3) monitored the censor's patching behaviors over time. We identified possible internal traffic of the censorship system, analyzed its memory management and load-balancing mechanisms, and observed process-level changes in an injector node. We employed a new side channel to distinguish the injector's multiple processes to assist our analysis. Our monitoring revealed that the censor coordinated an incorrect patch for Wallbleed in November 2023 and fully patched it in March 2024. Wallbleed exemplifies that the harm censorship middleboxes impose on Internet users is even beyond their obvious infringement of freedom of expression. When implemented poorly, it also imposes severe privacy and confidentiality risks to Internet users.

ABOUT NDSS The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the organization’s’ YouTube channel.

Permalink

The post NDSS 2025 – Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall of China appeared first on Security Boulevard.

❌