Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Backdoor in XZ Utils That Almost Happened

11 April 2024 at 07:01

Last week, the Internet dodged a major nation-state attack that would have had catastrophic cybersecurity repercussions worldwide. It’s a catastrophe that didn’t happen, so it won’t get much attention—but it should. There’s an important moral to the story of the attack and its discovery: The security of the global Internet depends on countless obscure pieces of software written and maintained by even more obscure unpaid, distractible, and sometimes vulnerable volunteers. It’s an untenable situation, and one that is being exploited by malicious actors. Yet precious little is being done to remedy it.

Programmers dislike doing extra work. If they can find already-written code that does what they want, they’re going to use it rather than recreate the functionality. These code repositories, called libraries, are hosted on sites like GitHub. There are libraries for everything: displaying objects in 3D, spell-checking, performing complex mathematics, managing an e-commerce shopping cart, moving files around the Internet—everything. Libraries are essential to modern programming; they’re the building blocks of complex software. The modularity they provide makes software projects tractable. Everything you use contains dozens of these libraries: some commercial, some open source and freely available. They are essential to the functionality of the finished software. And to its security.

You’ve likely never heard of an open-source library called XZ Utils, but it’s on hundreds of millions of computers. It’s probably on yours. It’s certainly in whatever corporate or organizational network you use. It’s a freely available library that does data compression. It’s important, in the same way that hundreds of other similar obscure libraries are important.

Many open-source libraries, like XZ Utils, are maintained by volunteers. In the case of XZ Utils, it’s one person, named Lasse Collin. He has been in charge of XZ Utils since he wrote it in 2009. And, at least in 2022, he’s had some “longterm mental health issues.” (To be clear, he is not to blame in this story. This is a systems problem.)

Beginning in at least 2021, Collin was personally targeted. We don’t know by whom, but we have account names: Jia Tan, Jigar Kumar, Dennis Ens. They’re not real names. They pressured Collin to transfer control over XZ Utils. In early 2023, they succeeded. Tan spent the year slowly incorporating a backdoor into XZ Utils: disabling systems that might discover his actions, laying the groundwork, and finally adding the complete backdoor earlier this year. On March 25, Hans Jansen—another fake name—tried to push the various Unix systems to upgrade to the new version of XZ Utils.

And everyone was poised to do so. It’s a routine update. In the span of a few weeks, it would have been part of both Debian and Red Hat Linux, which run on the vast majority of servers on the Internet. But on March 29, another unpaid volunteer, Andres Freund—a real person who works for Microsoft but who was doing this in his spare time—noticed something weird about how much processing the new version of XZ Utils was doing. It’s the sort of thing that could be easily overlooked, and even more easily ignored. But for whatever reason, Freund tracked down the weirdness and discovered the backdoor.

It’s a masterful piece of work. It affects the SSH remote login protocol, basically by adding a hidden piece of functionality that requires a specific key to enable. Someone with that key can use the backdoored SSH to upload and execute an arbitrary piece of code on the target machine. SSH runs as root, so that code could have done anything. Let your imagination run wild.

This isn’t something a hacker just whips up. This backdoor is the result of a years-long engineering effort. The ways the code evades detection in source form, how it lies dormant and undetectable until activated, and its immense power and flexibility give credence to the widely held assumption that a major nation-state is behind this.

If it hadn’t been discovered, it probably would have eventually ended up on every computer and server on the Internet. Though it’s unclear whether the backdoor would have affected Windows and macOS, it would have worked on Linux. Remember in 2020, when Russia planted a backdoor into SolarWinds that affected 14,000 networks? That seemed like a lot, but this would have been orders of magnitude more damaging. And again, the catastrophe was averted only because a volunteer stumbled on it. And it was possible in the first place only because the first unpaid volunteer, someone who turned out to be a national security single point of failure, was personally targeted and exploited by a foreign actor.

This is no way to run critical national infrastructure. And yet, here we are. This was an attack on our software supply chain. This attack subverted software dependencies. The SolarWinds attack targeted the update process. Other attacks target system design, development, and deployment. Such attacks are becoming increasingly common and effective, and also are increasingly the weapon of choice of nation-states.

It’s impossible to count how many of these single points of failure are in our computer systems. And there’s no way to know how many of the unpaid and unappreciated maintainers of critical software libraries are vulnerable to pressure. (Again, don’t blame them. Blame the industry that is happy to exploit their unpaid labor.) Or how many more have accidentally created exploitable vulnerabilities. How many other coercion attempts are ongoing? A dozen? A hundred? It seems impossible that the XZ Utils operation was a unique instance.

Solutions are hard. Banning open source won’t work; it’s precisely because XZ Utils is open source that an engineer discovered the problem in time. Banning software libraries won’t work, either; modern software can’t function without them. For years, security engineers have been pushing something called a “software bill of materials”: an ingredients list of sorts so that when one of these packages is compromised, network owners at least know if they’re vulnerable. The industry hates this idea and has been fighting it for years, but perhaps the tide is turning.

The fundamental problem is that tech companies dislike spending extra money even more than programmers dislike doing extra work. If there’s free software out there, they are going to use it—and they’re not going to do much in-house security testing. Easier software development equals lower costs equals more profits. The market economy rewards this sort of insecurity.

We need some sustainable ways to fund open-source projects that become de facto critical infrastructure. Public shaming can help here. The Open Source Security Foundation (OSSF), founded in 2022 after another critical vulnerability in an open-source library—Log4j—was discovered, addresses this problem. The big tech companies pledged $30 million in funding after the critical Log4j supply chain vulnerability, but they never delivered. And they are still happy to make use of all this free labor and free resources, as a recent Microsoft anecdote indicates. The companies benefiting from these freely available libraries need to actually step up, and the government can force them to.

There’s a lot of tech that could be applied to this problem, if corporations were willing to spend the money. Liabilities will help. The Cybersecurity and Infrastructure Security Agency’s (CISA’s) “secure by design” initiative will help, and CISA is finally partnering with OSSF on this problem. Certainly the security of these libraries needs to be part of any broad government cybersecurity initiative.

We got extraordinarily lucky this time, but maybe we can learn from the catastrophe that didn’t happen. Like the power grid, communications network, and transportation systems, the software supply chain is critical infrastructure, part of national security, and vulnerable to foreign attack. The US government needs to recognize this as a national security problem and start treating it as such.

This essay originally appeared in Lawfare.

In Memoriam: Ross Anderson, 1956–2024

10 April 2024 at 07:08

Last week, I posted a short memorial of Ross Anderson. The Communications of the ACM asked me to expand it. Here’s the longer version.

EDITED TO ADD (4/11): Two weeks before he passed away, Ross gave an 80-minute interview where he told his life story.

Ross Anderson

31 March 2024 at 20:21

Ross Anderson unexpectedly passed away Thursday night in, I believe, his home in Cambridge.

I can’t remember when I first met Ross. Of course it was before 2008, when we created the Security and Human Behavior workshop. It was well before 2001, when we created the Workshop on Economics and Information Security. (Okay, he created both—I helped.) It was before 1998, when we wrote about the problems with key escrow systems. I was one of the people he brought to the Newton Institute, at Cambridge University, for the six-month cryptography residency program he ran (I mistakenly didn’t stay the whole time)—that was in 1996.

I know I was at the first Fast Software Encryption workshop in December 1993, another conference he created. There I presented the Blowfish encryption algorithm. Pulling an old first-edition of Applied Cryptography (the one with the blue cover) down from the shelf, I see his name in the acknowledgments. Which means that sometime in early 1993—probably at Eurocrypt in Lofthus, Norway—I, as an unpublished book author who had only written a couple of crypto articles for Dr. Dobb’s Journal, asked him to read and comment on my book manuscript. And he said yes. Which means I mailed him a paper copy. And he read it. And mailed his handwritten comments back to me. In an envelope with stamps. Because that’s how we did it back then.

I have known Ross for over thirty years, as both a colleague and a friend. He was enthusiastic, brilliant, opinionated, articulate, curmudgeonly, and kind. Pick up any of his academic papers—there are many—and odds are that you will find a least one unexpected insight. He was a cryptographer and security engineer, but also very much a generalist. He published on block cipher cryptanalysis in the 1990s, and the security of large-language models last year. He started conferences like nobody’s business. His masterwork book, Security Engineering—now in its third edition—is as comprehensive a tome on cybersecurity and related topics as you could imagine. (Also note his fifteen-lecture video series on that same page. If you have never heard Ross lecture, you’re in for a treat.) He was the first person to understand that security problems are often actually economic problems. He was the first person to make a lot of those sorts of connections. He fought against surveillance and backdoors, and for academic freedom. He didn’t suffer fools in either government or the corporate world.

He’s listed in the acknowledgments as a reader of every one of my books from Beyond Fear on. Recently, we’d see each other a couple of times a year: at this or that workshop or event. The last time I saw him was last June, at SHB 2023, in Pittsburgh. We were having dinner on Alessandro Acquisti‘s rooftop patio, celebrating another successful workshop. He was going to attend my Workshop on Reimagining Democracy in December, but he had to cancel at the last minute. (He sent me the talk he was going to give. I will see about posting it.) The day before he died, we were discussing how to accommodate everyone who registered for this year’s SHB workshop. I learned something from him every single time we talked. And I am not the only one.

My heart goes out to his wife Shireen and his family. We lost him much too soon.

EDITED TO ADD (4/10): I wrote a longer version for Communications of the ACM.

Google Pays $10M in Bug Bounties in 2023

22 March 2024 at 07:01

BleepingComputer has the details. It’s $2M less than in 2022, but it’s still a lot.

The highest reward for a vulnerability report in 2023 was $113,337, while the total tally since the program’s launch in 2010 has reached $59 million.

For Android, the world’s most popular and widely used mobile operating system, the program awarded over $3.4 million.

Google also increased the maximum reward amount for critical vulnerabilities concerning Android to $15,000, driving increased community reports.

During security conferences like ESCAL8 and hardwea.io, Google awarded $70,000 for 20 critical discoveries in Wear OS and Android Automotive OS and another $116,000 for 50 reports concerning issues in Nest, Fitbit, and Wearables.

Google’s other big software project, the Chrome browser, was the subject of 359 security bug reports that paid out a total of $2.1 million.

Slashdot thread.

Drones and the US Air Force

18 March 2024 at 07:03

Fascinating analysis of the use of drones on a modern battlefield—that is, Ukraine—and the inability of the US Air Force to react to this change.

The F-35A certainly remains an important platform for high-intensity conventional warfare. But the Air Force is planning to buy 1,763 of the aircraft, which will remain in service through the year 2070. These jets, which are wholly unsuited for countering proliferated low-cost enemy drones in the air littoral, present enormous opportunity costs for the service as a whole. In a set of comments posted on LinkedIn last month, defense analyst T.X. Hammes estimated the following. The delivered cost of a single F-35A is around $130 million, but buying and operating that plane throughout its lifecycle will cost at least $460 million. He estimated that a single Chinese Sunflower suicide drone costs about $30,000—so you could purchase 16,000 Sunflowers for the cost of one F-35A. And since the full mission capable rate of the F-35A has hovered around 50 percent in recent years, you need two to ensure that all missions can be completed—for an opportunity cost of 32,000 Sunflowers. As Hammes concluded, “Which do you think creates more problems for air defense?”

Ironically, the first service to respond decisively to the new contestation of the air littoral has been the U.S. Army. Its soldiers are directly threatened by lethal drones, as the Tower 22 attack demonstrated all too clearly. Quite unexpectedly, last month the Army cancelled its future reconnaissance helicopter ­ which has already cost the service $2 billion—because fielding a costly manned reconnaissance aircraft no longer makes sense. Today, the same mission can be performed by far less expensive drones—without putting any pilots at risk. The Army also decided to retire its aging Shadow and Raven legacy drones, whose declining survivability and capabilities have rendered them obsolete, and announced a new rapid buy of 600 Coyote counter-drone drones in order to help protect its troops.

❌
❌